Menofia University
Faculty of Engineering
Shebien El-kom
First Semester Examination
Academic Year : 2015-2016

Allowed Tables and Charts: None
Answer all the following questions: [100 Marks]
Q. 1
(A) Let $\phi(x, y, z)=x e^{y+z}$, and $\bar{F}=\operatorname{grad} \phi$, find $\operatorname{div} \bar{F}$, curl \bar{F}
(\mathcal{B}) Evaluate using Green's theorem in the plane for $\oint_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y \quad$ where C is the area
bounded by $\mathbf{x}=\mathbf{0}, \mathbf{y}=\mathbf{0}$, and $\mathbf{x}+\mathbf{y}=\mathbf{2}$.
(C) Show that $\nabla \phi$ is a vector perpendicular to the surface $\phi(x, y, z)=c$, where constant.
(D) If $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$
a) Find $\nabla \phi$ if $\phi=\frac{1}{r}$
b) Find $\nabla \phi$ if $\phi=\ln r$
.(E) Show by Green's theorem that the area bounded by a simple closed curve C is given by $\frac{1}{2} \oint_{c} x d y-y d x$, then compute the area of ellipse whose parametric equations are
$(x=a \cos \theta \quad, y=b \sin \theta)$
(\mathcal{F}) Determine whether the vector field $\bar{F}=\cosh x \bar{i}+6 y z^{2} \bar{j}+6 y^{2} z$ is conservative. If it is conservative, find its scalar potential. Then, Evaluate $\oint_{C} \bar{F} . d \bar{r}$ along any simple closed curve. Also, Evaluate $\int_{C} \bar{F} \cdot d \bar{r}$ between the points $(0,0,0)$ and $(2,4,2)$ along the curve given by the parametric equations

$$
x=t^{2}+1, \quad y=3 t^{2}+\sqrt{t}, \quad z=t^{3}+t
$$

Q2. (A) Evaluate $\oint_{C}\left(x^{2} y \cos x+2 x y \sin x-y^{2} e^{x}\right) d x+\left(x^{2} \sin x-2 y e^{x}\right) d y$
around the hypocycloid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$
(B) Verify Stokes' theorem for

$$
\bar{F}=\left(x^{3}+\frac{y z^{2}}{2}\right) \bar{i}+\left(y^{2}+\frac{x z^{2}}{2}\right) \bar{j}+x y z \bar{k}
$$

where S is the surface of the cube
$x=0, y=0, z=0, x=3, y=3, z=3$ above the $x-y$ plane.
(C) Use divergence theorem to evaluate the surface integral
$\iint_{S} \bar{A} \cdot \bar{n} d S$ where $\bar{A}=x^{2} \bar{i}+y^{2} \bar{j}+z^{2} \bar{k}$ and the surface S is
the surface of the cube $0 \leq x \leq 1, \quad 0 \leq y \leq 1, \quad 0 \leq z \leq 1$.
(D) Solve the following L.P.P. using Simplex method

Maximize $Z(\$)=3 x_{1}+5 x_{2}$
Subject to

$$
\begin{gathered}
5 x_{1}+5 x_{2} \leq 25 \\
9 x_{1}+13 x_{2} \geq 117 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

Then check your answer using graphical method.
(E) Evaluate

1) i) $\Gamma(-5 / 2)$
ii) $\int_{0} \frac{d x}{\sqrt{-\ln x}}$
iii) $\int_{0}^{\pi / 2} \sin ^{6} \theta d \theta$
iv) $\int_{0}^{\pi / 2} \sqrt{\tan \theta} d \theta$
2) Prove that $\beta(m, n)=2 \int_{0}^{\pi / 2} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta d \theta$
ii) $\int_{0}^{2 \pi} \sin ^{8} \theta d \theta=\frac{35 \pi}{64}$
